Journal of Organometallic Chemistry, 182 (1979) 251–255 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

REACTIONS OF TRIALKYLMETHYLENEPHOSPHORANES WITH 1,5-CYCLOOCTADIENE-PLATINUM(II) AND -IRIDIUM(I) COMPLEXES

G. BLASCHKE, H. SCHMIDBAUR *

Anorganisch-chemisches Institut der Technischen Universität München, D 8046 Garching (W. Germany)

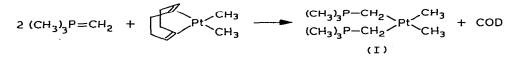
and W.C. KASKA *

Department of Chemistry, University of California, Santa Barbara (U.S.A.)

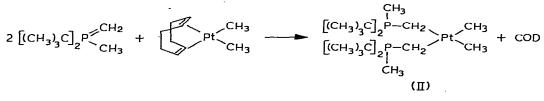
(Received May 21st, 1979)

Summary

The reactions of $(CH_3)_3PCH_2$ and $CH_3[(CH_3)_3C]_2PCH_2$ with $(COD)Pt(CH_3)_2$ result in the formation of the corresponding *cis*-dimethylplatinum(II)-bis-ylide complexes. With $(COD)PtCl_2$, a transylidation takes place, but the expected chelating ylide complexes cannot be isolated. Treatment of $(COD)_2Ir_2Cl_2$ with excess $CH_3[(CH_3)_3C]_2PCH_2$ gives the mononuclear ylide chelate $(COD)Ir_{(CH_2)_2}P[C(CH_3)_3]_2$.


Introduction

Complexes of phosphorus ylides with transition metals are of current interest, since a number of compounds of this type are likely to be novel efficient catalysts [1-6]. The analysis of pertinent previous studies with the smallest ylide, $(CH_3)_3PCH_2$, and of a homologue which bears two bulky substituents, $CH_3[(CH_3)_3C]_2PCH_2$, suggests that ylide reactions with $(COD)Pt(CH_3)_2$, $(COD)PtCl_2$, and $[(COD)IrCl]_2$ will give complexes of these noble metals [7-10].


Results

1. Platinum complexes

1.1 Compounds of type $(R'_2RPCH_2)_2Pt(CH_3)_3$ (R'=R=Me; R'=tBu). Treatment of methylenetrimethylphosphorane [7] with (1,5-cycloooctadiene)dimethylplatinum(II) [8] in benzene in a molar ratio of 2/1 gives *cis*-bis[trimethylphosphoniummethylid]dimethylplatinum(II), I, by displacement of cyclooctadiene (COD):

When the mixture is cooled, a white solid precipitates which is easily separated by filtration. Even upon stirring the reaction mixture for several hours no evolution of methane or ethane is observed *. Treatment of $(COD)Pt(CH_3)_2$ with t-Bu₂MeP=CH₂ in benzene gives the analogous 2/1 platinum complex (II):

Again no methane is liberated and ring closure does not occur. Complex II can be recrystallized from toluene at low temperatures and is isolated as a white solid. The compound is more sensitive to air and more thermolabile than I and decomposes slowly in benzene solution.

Complex I decomposes rapidly in dichloromethane, and so its NMR spectra must be recorded in THF- d_8 . The ¹H-NMR spectrum shows two doublets accompanied by platinum satellites. One of these can be assigned to the methylplatinum protons at 0.1 ppm with a ⁴J(PCPtCH) coupling of 2.2.Hz and a ²J(PtCH) coupling of 73.12 Hz; the second group of doublets is assigned to the methylene protons at 0.7 ppm with a ²J(PCH) coupling of 12.75 Hz and a ²J(PtCH) coupling of 55.5 Hz. The phosphorus methyl protons give rise to a doublet at 1.94 ppm with a ²J(PCH) coupling of 13.5 Hz. Phosphorus decoupling simplifies the signals to singlets which are still associated with the corresponding platinum satellites. ³¹P-NMR Spectra reveal a singlet centered at 17.34 ppm with satellites ²J(PC¹⁹⁵Pt) 91.55 Hz.

There is no evidence that the *cis* arrangement of ligands postulated in I rearranges to *trans*. Generally, the *trans* form has higher ${}^{2}J(PtCH)$ absolute value than the *cis*; the exact geometry, however, must await an X-ray structural analysis [12].

The ¹H-NMR spectrum of compound II is somewhat more complicated because of overlapping by the additional doublet of the t-butyl protons at 0.6 ppm, ³J(PCCH) 12.8 Hz, but all other signals are as observed for I. The results are listed in Table 1. A ³¹P-resonance appears as a singlet at 51.9 ppm with satellites of the ²J(¹⁹⁵PtP) coupling of 91.9 Hz. The mass spectra of compounds I and II exhibit the molecular ions at m/e = 405 and 573, respectively.

1.2 Reactions with $(COD)PtCl_2$. Treatment of $(COD)PtCl_2$ [8] with four equivalents of t-Bu₂MeP=CH₂ generates an orange-yellow solution. The expected amount of di-t-butyldimethylphosphonium chloride is precipi-

252

^{*} In contrast, [Me₃Pt^{IV}]⁺PF₆ and CH₂=PPh₃ readily lose ethane and methane [11].

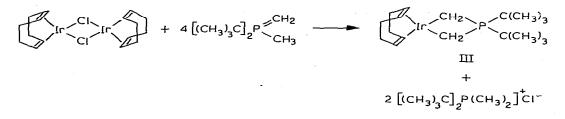
TABLE 1

NMR-DATA OF COMPLEXES I, II AND III a

I ¹ <i>H-NMR</i> (THF-d ₈): δ (CH ₃) = 1.9, d, 18 H, ² <i>J</i> (PCH) = 13.5; δ (CH ₂) = 0.7, "d", 4 H, ² <i>J</i> (PCH) =
12.75, ${}^{2}J({}^{195}PtCH) = 55.5; \delta(PtCH_{3}) = 0.1, "d", 6 H, {}^{4}J(PC{}^{195}PtCH) = 2.2, {}^{2}J({}^{195}PtCH) = 73.1;$
${31P}$; s, s, s with satellites ${31P}$ ${1H}$ -NMR (THF-d ₈): $\delta(P) = 17.3$, s, ${^2J}(PtP) = 91.55$

- II ¹*H*-*NMR* (C₆D₆): δ (CH₃) = 0.9, d, 6 H, ²*J*(PCH) = 12.4; δ (CCH₃) = 0.6, d, 36 H, ³*J*(PCCH) = 12.5; δ (CH₂) = 0.42, "d", 4 H, ²*J*(PCH) = 11.5, ²*J*(¹⁹⁵PtCH) = 46.0; δ (PtCH₃) = 0.2, "d", 6 H, ⁴*J*(PCPtCH) = 1.9, ²*J*(¹⁹⁵PtCH) = 51.5, {³¹P}: s, s, s, s, with satellites. ³¹*P* {¹*H*}-*NMR* (C₆D₆): δ (P) = 51.9, s, ²*J*(PtP) = 91.9 Hz.
- III ¹*H-NMR* (C₆D₆): δ (CH₂P) = 0.51, d, 4 H, ²*J*(PCH) = 4.5; δ (CCH₃) = 1.09, d, 18 H, ³*J*(PCCH) = 12.75; δ (C₈H₁₂) = 1.75–2.6, m, 8 H, and 4.0, m, 4 H. {³¹P}: s, s, m, m, ¹³*C* {¹*H*}*NMR* (C₆D₆): δ (CH₂) = -20.06, d, ¹*J*(PC) = 29.28, δ (CH₃) = 26.55, s; δ (PCC) = 30.16, d, ¹*J*(PC) = 11.6; δ (C₈H₁₂) = 32.81, s, and 63.12 s. ³¹*P* {¹*H*}*NMR* (C₆D₆): δ (P) = 79.53, s.

^a Chemical shifts in ppm. Coupling constants in Hz.


tated and separated by filtration. This salt was identified with NMR and IR spectra by comparison with an authentic sample.

¹H-NMR spectra of the supernatant solution (benzene) show signals which can be assigned to t-butyl and methylene protons in the expected range of chemical shifts, but no pure well-defined compound can be isolated. However, removal of the solvent from the coloured benzene solution gives a red-brown oily product which has a complex NMR spectrum.

All efforts to obtain a pure solid by recrystallisation from solvents such as toluene, pentane or ether failed. Though transplidation occurs, no well defined Pt-complex is isolated in this way; even at low temperatures the reaction route is the same.

2. Iridium Compounds.

Dimeric $[(1,5-COD)IrCl]_2$ [13] is treated with t-Bu₂MeP=CH₂ in benzene solution in a molar ratio of 1/2. Transylidation immediately gives the expected iridium complex (III) as well as the precipitated phosphonium salt:

The phosphonium salt is filtered off, the orange-red filtrate evaporated, and the residue recrystallized from toluene. The red crystals obtained are extremely sensitive to moisture and air and decompose to paramagnetic, purple Ir¹¹¹ species.

The ¹H-NMR spectrum of the product shows, besides the two complex signals of the coordinated cyclooctadiene, two doublets of the methylene and t-butyl protons. ³¹P Decoupling simplifies the signals to singlets. The ¹³C-NMR spectrum supports the proposed structure. Proton decoupled ³¹P resonance

Conclusion

 $Me_3P=CH_2$ and t- $Bu_2MeP=CH_2$ react with (COD)Pt(CH_3)₂ by substitution of cyclooctadiene to give the bis-monodentate ylide complexes I and II. No deprotonation of the ylide is observed even in the case of the bulky t-butyl substituted ylide. Starting from (COD)PtCl₂ and t- $Bu_2MeP=CH_2$ the expected transylidation is indeed observed, but the product formed in solution decomposes on attempted isolation.

From $[(COD)IrCl]_2$ and t-Bu₂MeP=CH₂ the new chelated ylide complex III is formed; this is analogous to known (COD)rhodium(I) ylide complexes. The reaction route involves the transylidation mechanism.

Experimental

Preparation of $(Me_3PCH_2)_2Pt(CH_3)_2(I)$

0.36 g (1.08 mmol) (COD)Pt(CH₃)₂ is dissolved in benzene and a solution of 0.195 g (2.16 mmol) of Me₃P=CH₂ in benzene is slowly added. The mixture is stirred at room temperature for 1 h. The white precipitate which forms on cooling is filtered off, washed, and dried in vacuo, giving I in 86% yield (0.370 g, 0.9 mmol), m.p.: 154°C. Anal. Found: C, 30.12; H, 7.11; P, 15.12; $C_{10}H_{28}P_2Pt$ Calcd.: C, 29.7; H, 6.96; P, 15.3. Mass spectrum: m/e = 405.

Preparation of $(t-Bu_2MePCH_2)_2Pt(CH_3)_2$ (II)

0.35 g (1.05 mmol) (COD)Pt(CH₃)₂ and 0.51 g (2.9 mmol) t-Bu₂MeP=CH₂ are brought into reaction in the same way, with stirring for 12 h at room temperature and 2 h at 60° C. The solvent is removed and the crude product recrystallized from toluene at -78° C. II is obtained in 56% yield (0.34 g, 0.7 mmol) as a white solid. m.p.: 180°C, (decomp). Anal. Found: C, 46.13; H, 9.41, C₂₂H₅₂P₂Pt Calcd.: C, 46.06; H, 9.14. Mass spectrum: m/e = 573.

Preparation of $(C_8H_{12})Ir(CH_2)_2P(tBu)_2$ (II)

To a solution of 0.40 g (0.65 mmol) (1,5-cyclooctadiene)iridium(I) chloride dimer in 10 cm³ of benzene, a solution of 0.52 g (3 mmol) of tBu₂MeP=CH₂ in benzene is added dropwise. The mixture is stirred for 2 h at room temperature. The precipitated phosphonium salt is filtered off, and the solvent removed in vacuo. Recrystallization from toluene at -78° C gives III as orange-red, extremely air sensitive crystals, m.p.: 98°C. Anal. Found: C, 45.21; H, 6.94; C₁₈H₃₄IrP Calcd. C, 45.65; H, 7.24; Mass spectrum: m/e = 473 (65%).

Acknowledgement

The authors are grateful to Procter and Gamble, Germany, for a scholarship (to G.B.).

References

- 1 H. Schmidbaur, Acc. Chem. Res., 8 (1975) 62.
- 2 H. Schmidbaur, G. Blaschke and F.H. Köhler, Z. Naturforsch., Teil B, 32 (1977) 757.
- 3 H. Schmidbaur, G. Blaschke and H.P. Scherm, Chem. Ber., in press.
- 4 W.C. Kaska and R.F. Reichelderfer, J. Organometal. Chem., 78 (1974) C47.
- 5 W. Keim, F.H. Kowadl, R. Goddard and C. Krüger, Angew. Chem. Int. Ed. Engl., 17 (1978) 466.
- 6 N.L. Holy, N.C. Baenziger and R.M. Flynn, Angew. Chem. Int. Ed. Engl., 17 (1978) 686.
- 7 H. Schmidbaur and W. Tronich, Chem. Ber., 101 (1968) 3556.
- 8 H.C. Clark and L.E. Manzer, J. Organometal. Chem., 59 (1973) 411.
- 9 R.P. Grey and L.R. Anderson, Inorg. Chem., 16 (1977) 3187.
- 10 H. Schmidbaur, G. Blaschke, H.J. Füller and H.P. Scherm, J. Organometal. Chem., 160 (1978) 41.
- 11 J.C. Baldwin, and W.C. Kaska, Inorg. Chem., 18 (1979) 687.
- 12 F.R. Hartley, The Chemistry of Platinum and Palladium, John Wiley and Sons, New York, 1973. p. 335.
- 13 J.L. Herde, J.C. Lambert and C.V. Senoff, Inorg. Synth. XV, (1975) 18.